交联明胶为壁材制备复合维生素微胶囊

井乐刚,赵新淮

中国药学杂志 ›› 2013, Vol. 48 ›› Issue (11) : 888-893.

PDF(1223 KB)
PDF(1223 KB)
中国药学杂志 ›› 2013, Vol. 48 ›› Issue (11) : 888-893. DOI: 10.11669/cpj.2013.11.011
论著

交联明胶为壁材制备复合维生素微胶囊

  • 井乐刚1,赵新淮2
作者信息 +

Preparation of Compound Vitamin Microcapsules Using Cross-linked Gelatin as Wall Material

  • JING Le-gang1, ZHAO Xin-huai2
Author information +
文章历史 +

摘要

目的 研究以交联明胶为壁材的复合维生素微胶囊的制备工艺及体外释放行为。方法 在过氧化氢存在下,以阿魏酸为交联剂,通过辣根过氧化物酶催化,制备交联明胶,考察反应条件对交联度的影响;然后以交联明胶为壁材,以盐酸硫胺素(维生素B1)、核黄素(维生素B2)、盐酸吡哆醇(维生素B6)、叶酸、烟酰胺的混合物为芯材,采用喷雾干燥工艺,按不同壁材/芯材比,制备复合维生素微胶囊。用扫描电镜和激光粒度仪,对微胶囊进行了表征。用荧光分光光度计,对微胶囊的包埋率、荷载量以及在模拟胃液和模拟肠液中的释放行为,进行了测试和分析。结果 在温度为40 ℃、pH值为8.0、明胶浓度为9%(W/V)、阿魏酸浓度为40 mmol·L-1、交联时间为24 h的反应条件下,交联明胶的交联度较高,达到10%。以此交联明胶为壁材制备的微胶囊,其中维生素的包埋率在85%以上;少数呈表面光滑的圆球形,大多数表面有凹陷;平均粒径为15.27 μm;当壁材/芯材为10/1(W/W)时,维生素在模拟胃液和模拟肠液中完全释放的时间,分别为30和16 min,都比明胶为壁材时相应延长。结论 以交联明胶为壁材,采用喷雾干燥工艺,可以制备出包埋率高、具有一定的缓释性能的复合维生素微胶囊。

Abstract

OBJECTIVE To study the preparation and in vitro release profile of compound vitamin microencapsules using cross-linked gelatin as wall material. METHODS At the presence of hydrogen peroxide, the cross-linked gelatin was prepared with ferulic acid as the cross-linking agent. During this reaction, horseradish peroxidase was used as the catalyst. Influences of reaction conditions on the cross-linking degree were investigated. Compound vitamin microcapsules were prepared by spray-drying technique using the obtained cross-linked gelatin as wall material. The core material was the mixture of thiamine hydrochloride (vitamin B1), riboflavin (vitamin B2), pyridoxine hydrochloride (vitamin B6), folic acid and nicotinamide. The effect of the ratio of wall material to core material on the encapsulation efficiency and loading of the vitamins were investigated. The size and surface morphology of the compound vitamin microcapsules were characterized. The encapsulation efficiency, loading and in vitro release property of the core material were determined by fluorospectrophotometry. RESULTS A comparatively high cross-linking degree (ca. 10%) of cross-linked gelatin was obtained under the following reaction conditions:temperature of 40 ℃, pH value of 8.0, gelatin concentration of 9% (W/V), ferulic acid concentration of 40 mmol·L-1 and reaction time of 24 h. The vitamins were embedded by the cross-linked gelatin and the encapsulation efficiency was more than 85%. Scanning electron microscopy (SEM) study showed that the compound vitamin microcapsules had a regular spherical shape but the majority presented rough surfaces or dents. Particle size analysis indicated that the microcapsules had a mean diameter of 15.27 μm. At the ratio of coating material to core material was 10/1 (W/W), the vitamins encapsulated with the cross-linked gelatin released completely in 30 min in simulated gastric fluid, and they released completely in 16 min in simulated intestinal fluid. They released slower than the vitamins encapsulated with the gelatin accordingly. CONCLUSION Compound vitamin microencapsules with high encapsulation efficiency and sustained release effect can be obtained by spray-drying using cross-linked gelatin as wall material.

关键词

微胶囊 / 复合维生素 / 明胶 / 交联 / 阿魏酸

Key words

microcapsule / compound vitamin / gelatin / cross-linking / ferulic acid

引用本文

导出引用
井乐刚,赵新淮. 交联明胶为壁材制备复合维生素微胶囊[J]. 中国药学杂志, 2013, 48(11): 888-893 https://doi.org/10.11669/cpj.2013.11.011
JING Le-gang, ZHAO Xin-huai. Preparation of Compound Vitamin Microcapsules Using Cross-linked Gelatin as Wall Material[J]. Chinese Pharmaceutical Journal, 2013, 48(11): 888-893 https://doi.org/10.11669/cpj.2013.11.011
中图分类号: R944   

参考文献

[1] BEAULIEU L, SAVOIE L, PAQUIN P, et al. Elaboration and characterization of whey protein beads by an emulsification/cold gelation process:Application for the protection of retinol. Biomacromolecules, 2002, 3(2):239-248. [2] SHI X Y, TAN T W. Preparation and characterization of chitosan/ethylcellulose complex microcapsule. Chin J Chem Eng, 2003, 11(1):94-96. [3] DUCLAIROIR C, ORECCHIONI A M, DEPRAETERE P, et al. Alpha-tocopherol encapsulation and in vitro release from wheat gliadin nanoparticles. J Microencapsulation, 2002, 19(1):53-60. [4] DESAI K G, PARK H J. Effect of manufacturing parameters on the characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres prepared by spray-drying. J Microencapsulation, 2006, 23(1):91-103. [5] LEE J B, AHN J, LEE J, et al. L-ascorbic acid microencapsulated with polyacylglycerol monostearate for milk fortification. Biosci Biotechnol Biochem, 2004, 68(3):495-500. [6] UDDIN M S, HAWLADER M N A, ZHU H J. Microencapsulation of ascorbic acid:Effect of process variables on product characteristics. J Microencapsulation, 2001, 18(2):199-209. [7] KIM J C, LEE H Y, KIM M H, et al. Preparation and characterization of chitosan/gelatin microcapsules containing triclosan. Colloids Surf B:SBiointerfaces, 2006, 52(1):52-56. [8] CHEMTOB C , ASSIMACOPOULOS T, CHAUMEIL J C. Preparation and characteristics of gelatin microspheres. Drug Dev Ind Pharm, 1988, 14(10):1359-1374. [9] VANDELLI M A, FORNI F, COPPI G, et al. The effect of the cross-linking time period upon the drug release and dynamic swelling of gelatin microspheres. Pharmazie, 1991, 46(12):866-869. RAYMOND G, DEGENNARO M, MIKEAL R. Preparation of gelatin:Phenytoin sodium microspheres:An in vitro and in vivo evaluation. Drug Dev Ind Pharm, 1990, 16:1025-1051. VANDELLI M A, RIVASI F, GUERRA P, et al. Gelatin microspheres crosslinked with D, L-glyceraldehyde as a potential drug delivery system:Preparation, characterisation, in vitro and in vivo studies.Int J Pharm, 2001, 215(1-2):175-184. FUCHSBAUER H L, GERBER U, ENGELMANN J, et al. Influence of gelatin matrices cross-linked with transglutaminase on the properties of an enclosed bioactive material using β-galactosidase as model system. Biomaterials, 1996, 17(15):1481-1488. ZHAO Z, MOGHADASIAN M H. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid:A review. Food Chem, 2008, 109(4):691-702. STRAUSS G, GIBSON S M. Plant phenolics as cross-linkers of gelatin gels and gelatin-based coacervates for use as food ingredients. Food Hydrocolloids, 2004, 18(1):81-89. CAO N, FU Y, HE J. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids, 2007, 21(4):575-584. OU S, WANG Y, TANG S, et al. Role of ferulic acid in preparing edible films from soy protein isolate. J Food Eng, 2005, 70(2):205-210. ZHAO X H, FENG Z B. Determination of degree of hydrolysis of protein hydrolysates. Food Sci(食品科学), 1994, 15(11):65-67. IWANAGA K, YABUTA T, KAKEMI M, et al. Usefulness of microspheres composed of gelatin with various cross-linking density. J Microencapsulation, 2003, 20(6):767-776. Chinese Nutrition Society. Chinese Dietary Reference Intakes(中国居民膳食营养素参考摄入量). Beijing:China Light Industry Press, 2000:313. CHEN X M, TAN Y G, LI S Q, et al. Fluorimetry for the determination of vitamin B1 with vitamin B1-ammonium molybdate reaction. Chin J Anal Chem(分析化学), 1999, 27(8):992. ROSENBERG M, KOPELMAN I J, TALMON Y. A scanning electron microscopy study of microencapsulation. J Food Sci, 1985, 50(1):139-144. BUMA T J, HENSTRA S. Particle structure of spray-dried milk products as observed by scanning electron microscope. Neth Milk Dairy J, 1971, 25(1):75-80. BUMA T J, HENSTRA S. Particle structure of spray-dried caseinate and spray dried lactose as observed by scanning electron microscope. Neth Milk Dairy J, 1971, 25(4):278-283. KALAB M. Scanning electron microscopy of dairy products:An overview. Scanning Electron Microscopy, 1979,261-272. HU G H. Functional Food Gums(功能性食品胶). Beijing:Chemical Industry Press, 2004:164. ZOU G L. Enzymology(酶学). Wuhan:Wuhan University Press, 1997:187-188. CHIOU B S, ROBERTO J A B, PETER J B, et al. Cold water fish gelatin films:Effects of cross-linking on thermal, mechanical, barrier, and biodegradation properties. Eur Polym J, 2008, 44(11):3748-3753. PER VILSTRUP. Microencapsulation of Food Ingredients. 2nd ed Surry:Leatherhead Publishing, 2004:1-75.
PDF(1223 KB)

57

Accesses

0

Citation

Detail

段落导航
相关文章

/